What’s in a symbol: ontology, representation and language

SERGEI NIRENBURG* and YORICK WILKS†

* Computing Research Laboratory, New Science Hall, New Mexico State University, Las Cruces, NM 88003, USA
† Computer Science Department, University of Sheffield, Sheffield S1 4DP, UK

Abstract. This paper is in a form unconventional in modern journals but traditional for the discussion of foundational questions: a dialogue. It is a form that makes it possible to contrast two deeply held but incompatible views, each with its standard forms of defence, in order to seek common ground and make the differences more precise. In artificial intelligence, or at least in the major part of it still committed to symbolic representations, there is a long history of discussion of the origin and nature of the symbols we use in representations, symbols which normally look like words, English words in fact, but which most researchers deny are such words, since to concede that would put in question the abstract nature of the representation. In what follows, we examine our common ground and then diverge over five specific questions on the issue of representations. The discussion focuses on symbol use in representations of language, because there the similarity is most acute—between the representation and the represented—but the issues are general and apply to symbolic AI as such.

Keywords: meaning, symbols, grounding, Artificial Intelligence.

Received July 1999; accepted 8 December 2000

1. Introduction

That language and cognition are closely related in humans is undisputed, but in machines the connection is more problematical and strongly disputed. A dialogue is a form that can sharpen difficult questions, at least that is our hope, but not one that lends itself to historical or scholarly introductions, though it should be said at the outset that the central question in what follows, the nature, origin, acquisition and use of the symbols in AI representations, is one that has been discussed in print many times, by AI researchers (e.g. McDermott 1976, Hirst 1991, among others) as well as by many spectators of AI in philosophy and other cognitive sciences. After these burst of discussion, the issues raised then usually disappear again, unresolved, perhaps because they are unresolvable. Some version of this dialogue gets published as a paper every five years or so, as in these citations, and readers will have to judge for themselves whether any progress is being made. We want, above all, to clarify the questions and seek clear differences among the answers.

This paper starts with the common-ground between two opposed, and apparently irreconcilable positions, and then attempts to refine the differences between them: these positions are that the symbols we use in AI representations are (or, conversely,
are utterly different from) the English words they plainly resemble. Much AI research is only comprehensible on the negative assumption (in parentheses above), yet an important question, rarely asked, is whether it makes any real difference to the course of, or results from, AI research which of the above positions is true.

Both dialogue participants, as will become clear, share a set of very conservative assumptions: those of core representationalist AI. They include Newell’s assumptions (1973) about semantics as information processing as much as McCarthy’s (1977) vision of AI as the method of heuristics.

Within that representationalist camp, both participants differ from those aspects of the formalist movement, whether within linguistics or mainstream AI, who believe the solution, to whatever problem there is here, is to continue to seek better formalisms with a logical semantics. We have discussed elsewhere (Wilks 1992, Nirenburg & Raskin 1996) the claims of the formal approach to natural language processing (NLP) and will not repeat them here: in a nutshell, our joint view is that there is no reason to believe that systems for which notions like deductive closure are important have any demonstrable relationship to NLP, either as an empirical, engineering task or as a model of human processing.

The central issues for us are: first, whether or not one believes the symbols in representations (whether of language itself or some other part of the world) are fundamentally language-like in nature, and, second, whether or not the answer to this question affects our expectations concerning the development of large-scale application systems in the area of language processing.

If there were no relationship between our enquiry here into the nature of symbols and the processes within which we intend (as AI researchers) to use them, then this enterprise would be purely philosophical. The second issue above is currently of great practical importance in NLP. But we will argue here that the former, more apparently philosophical, question may influence the outcome of any research programme.

Our discussion will be organized round the following five questions:

1. Are representation languages (RLs) actually natural languages (NLs) in any respect?
2. Are languages (natural or representational) necessarily extensible as to the sense of symbols?
3. Are language acquisition and extensibility linked?
4. If automatic acquisition of language structure is possible, what are the consequences for any RL/NL difference?
5. What are the consequences of all of this, if any, for AI representations for humans (versus for machines).

2. A dialogue on representation: prolegomenon

SN: Even this much initial agreement might be more of the reductive kind illustrated by the old Soviet-era joke from ‘Radio Yerevan’:

Question: Have you heard that Academician Ambartsumian has just won a Volga car in the state lottery?

Answer: Of course I have. Only he’s no academician. He’s a night watchman. And his name is not Ambartsumian, It’s Rabinovich. And it was not a car. It was a hundred rubles. And he played poker, not the state lottery. Oh, and by the way: he didn’t win!

Some form of representationalism remains the mainstream AI position, even after much pressure from connectionism and, in the particular case of NLP, the recent and
much publicized successes of statistical methods. For example, purely statistical machine translation (MT) has risen to a level of success, in terms of the percentage of sentences correctly translated, of roughly the level of code redundancy in natural languages, i.e. 50–60%.

Our examination of the basis of meaning representation will return constantly to the following thesis: are representations in NLP, KR, etc. coded in terms close to those of natural language itself, and what are the consequences of this fact, if it is one?

Of course, the crucial issue is to define what is meant by ‘close’, or, in other words, what is natural language and where the boundaries between natural and artificial languages are to be drawn.

YW: What then are the salient features of the methodology that underwrite this extraordinary ability of NLP and KR researchers to go on writing down knowledge structures, linguistic or otherwise, in formalisms whose abstract structure is defined, more or less, but whose content—predicates, primitives, classifiers, etc.—is never set out in any formal terms but the most trivial?

SN: Here one has to agree first on the semantics of ‘formal’? Are there gradations of formality? Or do we all have to subscribe to logical and algebraic definitions of theories in order to be considered formal? Maybe the ability to be directly computable is what makes a structure formal?

YW: Remember that this question can only be asked of those who remain, more or less, within the representational paradigm: it cannot be asked of a fully distributed connectionist, nor of one, like Ken Church or Peter Brown who adopts a view of NLP in which words are simply symbol strings without significance.

Yet, in our empirical work we subscribe to the methodology of ‘NLP-as-language-engineering’, and our position there can be expressed very succinctly: formalists do sometimes change formalisms but they never go through a process of rejecting a complex set of hypotheses in the face of large scale, statistically assessable, evidence. That process, the distinctively scientific process, the lifeblood of science in all its aspects (except perhaps cosmology), never occurs in the case of purely formal theories.

SN: We cheerfully admit, of course, that we are unlikely to solve any such problems in this discussion, but let us at least we hope to tease out additional issues and maybe to learn to formulate the five following questions better.

2.1. The first question: are representation languages natural languages?

YW: This dialogue, though not a philosophical or psychological one, overlaps with one of the main aspects of Fodor’s (1987) Language of Thought claims: that the basis of mental representation is language-like in nature. Fodor presents a set of claims concerning the language-like properties of his putative LOT: in particular, the hierarchical, or tree-like, nature of its structures and the non-compositionality of the meanings of its predicates. The former has involved Fodor in extended disputes with connectionists about whether or not tree structures can be replicated by connectionist learning techniques. The possibility that they can is taken by Fodor to deny standard compositionality—oriented accounts of text (or sentence) meaning. But we differ from Fodor on the crucial issue of what it means to be ‘language-like’.

SN: Fodor’s is only one set of criteria for what features make a language ‘NL-like’. We can suggest two additional ones, such as the ‘live’, ‘unconstructed’ character of NL and the functional criterion of being designed to support human communication, that is, relying on the human apparatus of understanding.
YW: I would suggest that the first feature of language that should concern us in this discussion is as follows: can the predicates of a formal representational language avoid ending up ambiguous as to sense? A negative answer to this question would make RLs NL-like. It will also mean that understanding a representation involves knowing what sense a symbol is being used in. If NLs are necessarily extensible as to sense,—then can RLs that use NL symbols avoid this fate?

SN: The predicates of a representational language are consciously CONSTRUCTED. They do not exist except through the will of a designer. We can argue about the process of construction and how the elements of a representational language get realized in practice. But the crucial difference is that NLs HAPPEN, RLs are MADE. You presuppose somehow that an RL is not constructed but rather EXISTS. And if, indeed, RL symbols are allowed to be ambiguous, then having to know in what sense an RL symbol is being used simply sends the task of disambiguation one step further: to yet another, this time, unambiguous, RL.

YW: Here is where we start to disagree strongly: for me, RLs are not made, or rather they are made up of existing NL bits, all too often English. And I can give no sense to the claim that we make symbols ambiguous or not; we have no such control of NLs or RLs.

SN: In some NLP applications, texts in an RL (such as the Mikrokosmos TMR, see, e.g. Nirenburg and Defrise 1991) are typically used to represent the meaning of an NL text. Stating that RL elements are ambiguous is equivalent to saying that NL meaning cannot be truly extracted and represented. Another complication is the difficulty in using ambiguous RL statements as inputs to generation.

One can reconstruct the impetus for the above question in a deep pessimism about whether one can create an unambiguous RL. This is an important issue, though different from the original one. Briefly, there are two ways in which a representation language can be ambiguous. First, when one and the same RL representation can correspond to two or more non-synonymous NL texts and, second, when one and the same NL text can be represented with two or more distinct representations. In the latter case, an added issue is how to establish whether these distinct representations are synonymous or differ only in the grain size of description (which might be considered allowable variation for the purposes of NLP applications). I believe that occurrences of ambiguity of the former kind are to be avoided if possible in RLs.

YW: Yes, but that is not what I mean by ambiguity in RLs. I see no difference between what you describe and the question of whether translated passages of, say, Italian and of French are synonymous. I have no problem allowing that they are, modulo Quinean doubts. My worry is about the symbols that comprise them, be they RLs or NLs. Fodor faces this problem no more than do formalists who write ‘runs(John)’ and appear simply to know which of the many senses of ‘runs’ the symbol bears in that context.

SN: One reason is that formalists do not usually work with an RL which has an interpreted vocabulary (they sometimes refer to such an entity when they talk about models in model-theoretic semantics). Of course, runs(John) is not an expression in a natural language even if ‘run’ is taken as an unspecified sense of the English word. The reason is almost trivial: the parentheses and the intended assignment of a function-like character to ‘runs’ and argument-like character to ‘John’. Next, the artificial language used in this notation assumes an interpreter with human semantic capacity because a particular sense of the English word ‘run’ must be selected, as well as a particular sense of John. Of course, the most blatant abuse of the similarity with NL,
Ontology, representation and language

and the most overt proof that such notations expect human interpreters, is the ending -s on the predicate. Logicians would not think twice of writing ‘run(John&Mary)’ fully expecting the interpreter to understand that ‘runs’ and ‘run’ are identical! It is only in this sense we can say that this representation is like English. The formal system in which such language is used never bothers to explain formally this reliance on the human processor, concentrating instead on studying the formal manipulations of symbols.

YW: Your run/runs point is a nice one and tells on my side, I feel, at least as to how formalists and would-be formalists actually use formulae in a casual, self-deceptive way. Shall we now ask, what are the essential properties of being language-like and does a representational language have any of those properties, accidentally or necessarily?

Let us put this matter very crudely: you seem to believe that the classificatory hierarchy of, say, WordNet (Miller et al. 1990) consists of English words while that of Mikrokosmos does not. To me they seem both to consist of an ascending thesaurus of similar terms up to some notional top nodes, but I can see no difference between them in principle, only in richness of structure. This point is merely about the interpretation of symbols in a verbal/ontology hierarchy and how they are normally interpreted.

SN: Normally interpreted by whom? By people? Or by computer programs?

One of the differences between us may simply relate to how information is stored in the static knowledge sources of an NLP system, and used as a basis for inferences on representations. If the representation is ambiguous, as I believe it would be if an RL were an NL, then the inference system would have to disambiguate RL symbols. The decision to retain ambiguity in an RL leads to the situation where disambiguation occurs after a representation is obtained.

YW: I can accept of course that life would be simpler, if duller, if NLs consisted of unambiguous symbols, and the same goes for RLs. What I cannot grasp here is that it is, as you say, a matter of decision to let a representation be ambiguous or not. I cannot understand that. Let me ask again at its simplest: how can you believe the elements in Mikrokosmos, or Schank’s (1972) CD, or anything else like that, are other than English words, with their own sense ambiguity?

SN: This question may be understood in at least two different ways. Let me first comment on the one for which I feel I have a better repartee: surely RL elements are not just additional senses of NL words with which they share the ASCII codes. You would not say that the Spanish MAYOR is another sense of the English MAYOR, would you? As to the second interpretation of your statement, let me just say that having a separate language for primitives helps to explain paradigmatic relations among word- and phrase-senses, such as synonymy, antonymy etc. Of course, as in WordNet, one can bypass this explicitness about relations through the use of devices like synsets, but then one ends up with a knowledge source which does not support all the operations necessary for automatic meaning processing.

YW: OK, so we are moving into Quinean territory now, as when he used the impossibility of veridical paraphrase and translation to attack the folk-content notion of meaning [Quine 1963]. It would seem natural if we want to defend the latter (what shall we call it? Commonsense semantics?) that we also believe in some provable/ demonstrable notion of paraphrase. I would argue that even present poor quality Information Extraction (IE) and MT systems are steps towards a practical notion of paraphrase. But that is not a philosophical defence.

SN: Do you mean that in order to defend the feasibility of meaning representation
one needs to defend the feasibility of paraphrasing and translation? Clearly, even paraphrases and translations made by humans do not always convey exactly the same meaning. The simple defence might be that philosophers habitually operate with an ideal RL and do not take into account the notion of the grain size of description, to say nothing about the possibility of a slip of judgment or an outright error on the part of acquirers.

YW: There is a venerable tradition of describing meaning through translation and paraphrase without representing it explicitly. It was Frege who wanted a functional notion of word meaning representation, or sense, (Sinn) that related entities (referents, or Bedeutungen, for Frege) but which did not itself yield or possess content. For Frege (1960) sense was not a coded meaning: but a function that allows you to specify or locate plausible referents in the world: a black box, or a sort of recognizer if you like.

SN: And that brings us back to the issue of whether a representation of text meaning is required or can simply be pointed at, and compared with the meaning of another text or connected with a particular denotatum (which is in the real world, not in another set of symbols). In reality, we model the world of denotata using a set of symbols because we simply cannot avoid it if we want to develop computer applications which require meaning representations.

YW: Well, of course, that is exactly what connectionists deny—they think they can give some sense to non-symbolic models—but I don’t suppose we need bother with them here, since we both oppose that position. And I admit that my obsessive questions about the exact status of primitives in a KR (and whether they are NL words or not) ignores Frege’s best known injunction which was not to consider the sense of the symbol outside an expression. Will we get any closer to resolution here by considering a possible scale of NL-likeness for an RL:

English or Bulgarian
Esperanto
Predicate Calculus
Some Interlingua

Are these languages equally expressive and if so how could we know or prove it? If they are, then that is one form of NL/RL link: anything one can say in one, one can say in the other. Certainly many users of Predicate Calculus and interlingual formalisms have held this position of equal expressivity.

SN: An RL must at least support automatic inferencing operations, if it is to have any purpose. One could consider the difficulty (or otherwise) of adapting any of the above kinds of RLs to this task. The major consideration is, again, whether the language is intended for people or for machines. The answer is easy in the case of English, Bulgarian and Esperanto; more problematic for predicate calculus; and impossible for interlinguas, which are constructed. Any two independently constructed grammars of a language will be different, though they may well have the same weak or even strong generative capacity. The ideal interlingua would be good for both computers and people: it would support inferencing in a broad domain, thus permitting high-quality meaning representation for texts; and it would also be easy to repair and expand which, for the foreseeable future, will remain largely a task for people.

YW: I am not sure that tells one way or the other on the language-likeness issue, though it does make one ask if we have a clear notion of ‘equivalent coverage’ for representational languages in the way we do for grammars.
A key phrase that may help clarify our difference is that you say NLs are comprised of words and RLs of word-senses. But language research is different from other AI areas because, in all areas but language, we can imagine a computer system being better than us: better than physicians or grandmaster chess players. We cannot imagine a system understanding language better than people, and this point is not appreciated in some NLP areas.

SN: At the risk of sounding like a broken record, I would like to insist that the purpose of a representation is to get the symbol ambiguity out, which is exactly what you think cannot be done. But does that point require an objective measure of symbol ambiguity, anywhere in our discussion or outside it?

YW: Somewhere in his discussion where he approaches a ‘Concrete Lexicon’ to an ‘Abstract Dictionary’, Martin Kay (1989) seemed to be arguing that the brain must subscript symbols to separate the senses of (brain) RL primitives within a Concrete Lexicon, i.e. the head. I have never been sure quite what he meant, but he was clearly discussing the same issue as us, as many have before, and he seemed to me to be roughly on my side here: conceding that RL atoms could be ambiguous, like ordinary words, and that would have to be resolved by the processor that used them, that is, the brain itself. This is not the same as the RL expressions being ambiguous, even in context, which you take me to mean here and I do not.

SN: If we must talk about the brain, I am agnostic. I don’t know an awful lot about what is going on inside that device.

YW: No, neither do I, but people like us who talk about the nature of RLs for human knowledge must, like all AI researchers, be making at least potential claims about the brain, whether we admit it or not.

SN: I wonder whether we indeed do. Maybe if we concentrate just on representation by computers and for computers, we will be off the hook.

2.2. The second question: are languages necessarily extensible?

YW: How can anything that is a language be other than extensible? If that is obvious, one can then ask how can such extended information about a language be acquired. This could be seen as a traditional Chomskian (1965) question about language and the child’s learning of L1, its first language, but I intend it in the more accessible sense of an enquiry about how a computer can come to acquire new information about language, and whether that could ever be equated with the mastery of a merely finite, static, resource.

SN: Of course, language is extensible. However, any sublanguage used in an application has, up till now, been finite and static. In AI applications, acquisition of knowledge typically precedes its use. When a new word has been entered into the lexicon of an MT system, it has been done by people or, at least, sanctioned by people. One can argue that the associated representation language was static and was used on any new input text as such, until the need for further extensions arose.

YW: One can then ask whether this feature of language is universal and, if so, must it be also be possessed by RLs, too?

SN: It is well known that people have difficulty recognizing ambiguities; they immediately choose the contextually appropriate sense for each word or phrase. This seems to suggest that, if indeed meanings are represented, the elements of the representation are not ambiguous, as the operation of retrieving the other senses of an input language element is so expensive.

YW: Ah, yes, this is Wittgenstein’s (1958) famous point that ‘the senses of a word
do not pass in front of my mind’. But your point does not, to me, prove anything about the nature of the representation: it is only a point about our lack of access to our processes. I am not claiming that representations are ambiguous: only that the items in them can be ambiguous (out of context presumably) in just the way NL items can.

Do we therefore need to discuss the issue of what it is to know, objectively, that a symbol in a representational system/language is ambiguous (within or out of context). It is clear from the variation of lexicographic intuitions (10 senses for a given word versus 2 in different dictionaries) that mere intuition is not enough. Remember, too, Wierzbicka’s (1972) argument that polysemy is largely an illusion.

SN: Surely, lexicographic intuitions are about NL, not necessarily RL. That lexicographers disagree may simply mean that there does not exist some ‘correct’ number of senses. I intuitively dislike the suggestion that there is a correct number, but maybe in some system-operational approach, one could define word senses cross-linguistically. This latter point connects with the idea of using an almost Hjelmslevian (1972) view of the senses across languages as an impetus for humans to select senses for representation even in an internalized RL.

YW: Yes, the translation-as-representation paradigm, between NLs, has had a new lease of life recently, and it is a strange reprise of the Fodorian (1987) comedy of the Language of thought (LOT) as the translation one can not get at. I used to suffer the temptation at meetings to ask Fodor how he knew the LOT was not, say, Latin, but fortunately I never gave way to it, since I know he does not know.

More seriously, and given that LISP was considered almost a LOT by AIers in the 1970s: consider NIL in LISP, now usually thought of as three-ways ambiguous (an empty list, an atom and a Boolean value). Was there ever an objective test of that? Did it matter until it was noticed, in terms of the usefulness or otherwise of LISP? Was there a formal criterion for spotting it: i.e. is ‘giving a formal semantics of a representation’ a revelatory mechanism for exposing such ambiguity? I suspect not.

SN: The fact that a lexical ambiguity in a representation language can be contextually ‘benign’ does not necessarily prove that ambiguity can be introduced with similar impunity into RLs designed for the purpose of representing the meanings of texts.

YW: Agreed, and as we know NLs, unlike RLs, can be metalanguages for themselves, and this is probably a point on your side, one that suggests a clear NL/RL difference. Though I still do not need to concede, what you insist on, that we can allow or prevent ambiguity in RLs at will. These matters are under no one’s control: in RLs like CYC (Lenat et al. 1986) no one was able to control the coders’ use of the predicates effectively. There is no RL/NL distinction there, exactly where you seem to want it for RL coding, and this, for me, rebuts your earlier claim that applications are static and finite.

The case of corpus statistics may be interesting here because its users (e.g. Brown et al. 1992) generally have no use for terms like ‘word sense’ which they find too dependent on intuition; for them, symbols simply occur in environments which may or may not be usefully separable into classes of occurrence.

I am not sure there is any objective demonstration of the ambiguity of a symbol, which would require showing ‘Reality of Word Senses”? I have always used the Schvaneveldt (1990) Pathfinder nets as a justification: they can show ‘bank’ having separable subgraphs with a statistical algorithm that requires no seeding or supervision to do that. The other well-known statistical methods usually do not show ambiguity unless you assume it to start with.
SN: Your position here is similar to that of the ‘lexical-rule’-oriented lexical semanticists such as Pustejovsky (1995) who prefer to propose few (usually, one) word sense for recording in the dictionary, and then to add rules for accommodating meanings that do not directly conform to statically defined constraints. This single word sense is, indeed, often ambiguous. Unfortunately, the generative lexicon approach does not discuss the vocabulary of the representation language in any detail.

YW: No, I am not assuming single senses for words, nor lexical rules for creating dictionaries. Look at this a slightly different way: the relation between an expression in NL and its corresponding RL may be either a relationship like that between a language and its metalanguage, or one of (presumably mutual) translation. If the former case holds, then the languages need not really differ in type; they simply have an asymmetric relationship and might differ in expressiveness but, as is well known, a meta-RL is as much in need of its own meta-language as the object-NL. There is an agreement in the formal world to stop worrying about this, and probably rightly, but, if the NL-RL relationship is of that sort, there is no reason to believe the two levels differ over, say, polysemy or extensibility of meanings.

Alternatively, if the relationship is one of translation, then, almost by definition, \text{TRANSLATE}(X, Y)$, if \text{X} and \text{Y} are both symbolic, requires that \text{X} and \text{Y} be of the same type, that is, both are NL-like, in this case.

SN: Of course, we cannot tolerate an infinite regression of metalanguages. The relation between NL and RL is, to me, asymmetrical, though there will be both many-to-one relations between elements of NL and RL (e.g. synonymy) and one-to-many ones (most notably, polysemy). Internal consistency is achieved for RL through maintaining the complex cross-relationships in an ontology (the RL vocabulary). The issue of meaning grounding is more difficult and we might want to state, cautiously, that it is achieved through the multiple connections of the elements of an RL with multiple NLs, through human judgement of quality of translation correspondence.

Your argument about the relation of translation hinges centrally on how one defines \textit{type}. It may be that we do not disagree, but you elect to stress similarities between NL and RL while I persist in looking for differences. Let them be of the same type, but RLs must support machine inferencing while this cannot be asked of NLs. The case of the Dutch company BSO working with Esperanto as its interlingua (Witkam 1983) for MT, clearly showed how much a human-oriented (though invented) language had to be modified in order to serve as a kind of RL. Even the developers themselves, Esperanto enthusiasts all, had to call the new language somewhat differently: BCE or ‘binary-coded Esperanto’.

2.3. \textit{The third question: are acquisition and extensibility linked?}

YW: Acquisition in our sense is linked to the necessity or otherwise of symbol ambiguity, because much acquisition (especially automatic acquisition, i.e. machine learning) is of new ambiguities or senses of symbols, though machine learning researchers do not put it that way.

SN: The extent to which automatic acquisition of content is possible may indeed be a major practical undercurrent of this paper. A question for you: does explaining the meaning of an ambiguous symbol in terms of another ambiguous symbol actually constitute disambiguation?

YW: This a practical question, too, of course. We are seeking, in our everyday research, and outside dialogues like this, practical, robust, NL processors, not
necessarily wedded to one particular theory, but ones that tackle areas of NL and KR representations. I am rather neutral about particular representations but strong on assessment and large systems and data. On your question: again, I accept that an (ambiguous) symbol can be defined, more or less, by a string that is not, as a whole, ambiguous: dictionary definitions are a paradigms case of doing that, for people.

An assumption about communication behind all this is that the trivial diagram we are all familiar with, of humans communicating with their separate representations (in their head balloons) via the very narrow linear language stream coming from their mouths, is wrong in one crucial respect. It is normally shown with the same structure in the two heads. But there is no reason at all to believe that human communication requires identical logics, lexicons, grammars, parsers etc. in both heads, any more than it does identical beliefs.

I suggest the most striking feature of communication is that humans who differ about these structures (whether they know it or not) can communicate, just as can individuals with different dialects, or those writing to others at later historical periods.

SN: Yes, there should be no presupposition of a similarity between the knowledge and processing resources of various people, modulo the hardware (wetware?) and possibly some other, perhaps genetic, constraints. The difference is clear in the case of conversations between people who are native speakers of different languages or belonging to different professional and social strata, people of different ages, etc. It is indeed amazing how adaptable people are when viewed as information processors. At the same time, on the surface, what this shows is only that there may be as many ‘proprietary’ devices for processing language as there are people.

YW: The commonsense fact is that communication can take place within a bandwidth of difference, and human-computer communication in a way explores the limits of this bandwidth, and how far it can be extended in special cases by tuning lexicon structures and beliefs to each other in the course of communication. But this issue cannot be separated from the problem of language representation itself, for we cannot understand the nature of the representation of meaning in lexicons, say, unless we can see how to extend lexicons in the presence of incoming data that does not fit the lexicon we started with. Extension of representation is part of an adequate theory of representation.

SN: I think I understand your intended meaning: first, no set of static knowledge sources will have complete coverage; therefore, representations need to be extensible; therefore there must be a mechanism of adding elements to representations, preferably on the fly.

Further, many of such representation elements are lexical. And the easiest way of naming these new elements would be through the natural language strings that refer to them in the input and which triggered the representation augmentation process in the first place.

This, of course, presupposes automatic acquisition, because if a human is involved in the acquisition other suggestions could become quite palatable. In short, the argument for allowing natural language into a representation becomes thus also practical: we need it because otherwise we will have problems naming new atoms.

YW: Suppose we write

I: structure1 × corpus → structure2

as a basic model of acquisition of a representational structure, be it an ontology or a lexicon, to indicate that the initial state of the structure itself plays a role in the
acquisition, of which structure 2 is then a proper extension (capturing new concepts, senses etc.). This is a different model from the wholly automatic model of lexicon acquisition in, say TIPSTER related work (e.g. (Riloff 1993)), which can be written:

II: corpus \rightarrow structure

This case is one which does not update or ‘tune’ an existing lexicon but derives one directly and automatically from a corpus. We are arguing the essential role of representational structure in this process, and hence the process I, which we may also take to involve some essential human intervention as well. Interestingly perhaps, neither of these is an analogue to the Chomskian approach to (first) language acquisition (Chomsky 1965), which might be written:

III: Universal-Constraints \times corpus \rightarrow structure

If the constraints here are of the same format as a lexicon structure then this third form is closer to I above, especially in Fodor’s work, where the constraints become a sort of primitive-ontology or lexicon.

SN: This classification seems to avoid the issue of human involvement. In reality, fully automatic acquisition of lexical information does not, at this time, go anywhere deep enough to yield material of use in solving hard problems such as full-text lexical disambiguation or even syntactic analysis. In TIPSTER, for instance, and as far as I know, the automatic acquisition of subcategorization patterns for some English verbs was accompanied by massive manual acquisition. Personally, I would choose to use a combination of all three of the above methods of acquisition, depending on the quality of the input data and availability of good-quality constraints and structures.

2.4. The fourth question: if automatic acquisition is possible, what are the consequences for or against RLs as NLs?

YW: If automatic acquisition of content is possible to any degree, from a Machine-Readable Dictionary or corpus then, since those are plainly in NL, does this suggest that in some form NL is a representation language for information about language, and that settles the issue raised earlier.

SN: First of all, I think that this premise is a moot point at the moment, because automatic acquisition of content can be considered possible only if the content is plainly trivial. Any success in the automatic acquisition of content is predicated on the ability of the developers to model (in the weak sense, with no claims of similarity of the model to the modelled other than at output) the disambiguation and other meaning assignment processes of humans. More concretely, this modelling involves overt, human-directed, formulation, at the time of acquisition, of the background knowledge and processes which support the automatic assignment of meaning at processing time.

But even if the premise of your argument is granted, the argument itself still seems a bit of a sleight of hand. It is rather similar methodologically to the use by our colleagues at USC ISI (e.g. Hovy and Knight 1993) of the fact that the ontology in the Pangloss DARPA-funded MT project used English as its metalanguage: the Spanish lexicon in that project explained the meanings of Spanish words in terms of an ontology whose atoms were homographs of English words and expressions.

YW: Well, if they can do it, I might want to say it is not a sleight of hand but proof of my NL-RL point. I also want to use the metaphor of a dictionary as containing a lexicographer’s conscious, explicit, knowledge, which is what we might extract by processes like those described in Nomura (1993) and Wilks et al. (1996) that derive
lexical representations directly from MRDs (a fourth process not in our I-III). But other computations over the result could yield meaning connections no lexicographer had actually envisaged and which might be said to model his unconscious.

SN: A representation needs to be reformulated and fleshed out for machines. Lexicographers in writing (printed) dictionary entries rely heavily (if subconsciously) on the fact that their representations, such as definitions, will be processed by a high-quality language processor, namely, the human! This may be the very crux of our disagreement. The task of NLP knowledge acquirers is to use their language processing capacity to state information as overtly as possible given a desired grain-size of description and in a format which facilitates access by machine (e.g. frames). The latter condition is, of course, of secondary importance: it is a convenience consideration only. The former condition is contentful in that it presumes that the definition is not complete by itself but only together with the human understander of that definition. This can be proven wrong, incidentally, if it is shown that dictionary authors, in fact, do not rely on extraneous human knowledge in specifying definitions. But if that were so, why do lexicographers say that if you do not know some meaning, you will not understand it from the dictionary? Is that just frivolity on their part?

YW: It is frivolity and, if true in general, would make their products useless. I still think it is an open question whether structures derived pretty much automatically from MRDs can be useful for NLP (Wilks et al. 1996). If they are, your position weakens. Is our difference really one of bottom-up versus top-down approaches to the same information? You believe that the acquisition of the core of these knowledge resources can be done only semi-automatically, but under human top-down supervision, for instance, in the automatic production of lexicon entries.

2.5. The fifth question: the relationship of these issues to representations for humans and for machines.

SN: Representations for humans assume the presence of an extremely powerful analysis system and a huge amount of background knowledge. One has to specify things at a much finer grain of description for machines than for humans even if the purposes of the two descriptions are the same.

YW: This is an excellent question and not as much discussed as it should be. A difference in machine versus human handling of representations used to be called the Gensym issue (e.g. in McDermott 1976): a machine can handle English expressed as arbitrary Gensyms substituted for words, but a human native speaker cannot without vast retraining, if then. We can both accept the difference between the comprehensible representations that humans need and the fact that they have no meaning for machines, and use all this to prove opposite views as regards NL and RL. Your observation proves to me that, for that very reason, RLS must be accessible to humans (as well as machines) and therefore must be NL like in certain respects.

SN: This is a weaker form of your original argument about NLs as RLS, and I would fully agree with the premise: just like computer programs, which are written in part to be read by people (an estimated 80% of the time of software engineers is spent on maintenance: that is, reading and improving other peoples’ code), so should the knowledge structures in an RL. That in, say, Mikrokosmos 1996 names of atoms are words or phrases in English is due exactly to this fact. It is, on my view, a conceptual fallacy to read more into this state of affairs: for instance, to claim that there is an intrinsic necessity for RL elements to be also elements of an NL.

YW: Charniak’s 1991 final argument against connectionism was that you could not
understand the structures such systems acquired, and they were therefore not acceptable representations, regardless of whether machines could use them or not. How much of our underlying disagreement is over whether structure must be comprehensible?

SN: Well, to comprehend anything which is non-trivial, one must learn to do so. One can, in fact, learn to read meaning representations, as has been proved in practice. Of course, it is very desirable to avoid having people read unadorned RL structures, but this might be a premature hope.

YW: Would we be helped by thinking about how actual coders use RLs? An example that has interested me is how some Japanese researchers use interlinguas for, say, MT or in the Tokyo EDR dictionary project (Nomura 1993), but with English symbols. It has been argued that it may be an advantage for them because they do not, in many cases, see more than the main sense for any (English) primitive and this makes its use easier and less confusing than for a native speaker of the interlingua, if you will allow that term. The question might then be: has that fact any analogy with how you see a machine as handling a representation: the difference between human and machine handling of representations being, I think, crucial for your position, though not for mine?

SN: The analogy with understanding by machines is clear: they operate with fewer word and phrase senses (to say nothing about connotations) than people. However, I do not see any bearing that this observation has on the differences between RLs and NLs. If the Japanese researchers you mention do not know English well enough, this does not impinge in any way on the issue of whether RLs for computers should be either bad or good English or any other NL, or even an artificial language (with either narrow or broad coverage of meanings in an NL).

YW: Maybe when we model understanding we aim at too high a target: in ordinary situations people may understand just a fraction of what is said by a speaker but they ask clarification questions only when it matters to them. In reality, there are few penalties for failure in such miscommunication or misunderstanding: contrast medical counselling dialogue, legal searches, patents, and philosophical discussions, in all of which misunderstanding is thought disastrous and sometimes carries real costs.

I have a feeling we may have swapped sides here a bit. Part of our difference may arise from my own Wittgensteinian (1958) prejudices, derived from bad early training perhaps, which cause me to think language central and unreplaceable in thought and representation, so that there will never be any alternative to doing what we do now—whatever happens to AI or computational linguistics—because we are self-defined by language and we can not expunge it from representations.

SN: If the issue here is that, however people may try, they will not be able to produce RLs which are not ambiguous, then it is, or soon will be, a verifiable matter. Possibly, this is happening asymptotically. But it is surely not plausible that people are somehow constitutionally unable to come up with an unambiguous RL, not because of the size and complexity of the problem (which can be ameliorated through tools, partial automation etc.) but rather by definition. We would need to go through a much more detailed discussion of the influence of the fallibility of human acquirers on the nature of the RL, Sapir-Whorfi an (1956) influences of native tongues, difficulties with listing all senses of a lexeme or all synonyms of a word, as opposed to the human faculty of judgment as to whether any two words are synonymous.

YW: Ah, so at the end we really do differ. I think it is beyond human ability to design an RL without the features they now have, and for the reason we touched on:
they must remain comprehensible to us, and if they do they will be like NL, where I quite accept that ‘like’ inevitably remains a bit fuzzy. To me, it is as if representational comprehensibility will carry a price; which will be loss of control of the sort you think we can retain.

SN: But it is exactly your understanding of the meaning of ‘like’ which is the crux of the matter here. As long as it is fuzzy, one cannot very well argue about it. Further, I assume that by ‘control’ you mean whether people can be taught deliberately to produce representations that, as they or their project managers believe, would be processable by machines. As I understand it, you think this implausible because vestiges of human language will remain and corrupt the RL representations. I think it necessary, unless we can teach machines to reason using knowledge bases which are inconsistent or ambiguous. Mind you, I do not have any illusions about the practical attainability of knowledge bases which are fully consistent and unambiguous. The methodological choice is to carry on pretending that they are until special mechanisms are developed for dealing with such inconsistencies and ambiguities.

YW: Our misunderstandings persist to the end: vestiges of NL in an RL does not mean for me that a machine cannot ‘understand’ it in a particular application. Of course not, it is happening all the time in millions of working programmes. And our dialogue is proof that one can argue about matters that are not completely clear, as long as some understanding is produced along the way.

SN: Right. So long as we agree on what constitutes understanding, but that would need another conversation!

References

Ontology, representation and language

